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Abstract

自由境界問題の一種である Stefan問題は, 水から氷, あるいは氷から水への相転移
のモデルである. このモデルは Stefan-Boltzmann の法則でも知られている J. Stefan
によって, 19 世紀後半に考案されたようである. 本講演では非線形境界条件付きの 1
次元熱方程式に対する 1 相の Stefan問題について考察する. まず, この Stefan問題の
解を 3 つのタイプに分類する: 指数減衰する時間大域解, 高々多項式程度の減衰をする
時間大域解, 有限時間で爆発する解の 3 つである. これらの分類は初期値の大きさに
よって決まることを示す. さらに, 爆発時刻における解の挙動や自由境界の発散レート
についての結果も紹介する.

1 導入

1.1 Stefan 条件の導出

まず, Stefan条件を導出する. R3 内の x 軸に平行な柱状領域の x < s(t) の部分に水が,
x > s(t) の部分に氷が分布しているとする. ただし, x = s(t) は水と氷の境界面である. ま
た, 柱状領域の断面を D := D(t), 氷や水の温度は x 座標のみに依存しているとして u(t, x)
とおく.

Figure 1: 相転移モデル
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1.1, 1.2 節 は Daniele Andreucci の Lecture notes on the Stefan problem に大きくよる.



このとき, Fourierの法則から,熱流束は水の領域と氷の領域でそれぞれ−kwux(t, x),−kiux(t, x)
となる. ここで, kw, ki はそれぞれ, 水, 氷の拡散係数である. 時刻 t から t+ h までの間に
消費した熱量は,∫ t+h

t

∫
D(t)

{−kwux(t, s(t)−) · ex − kiux(t, s(t)+) · (−ex)} dt dy dz

= |D|
∫ t+h

t
{−kwux(t, s(t)−) + kiux(t, s(t)+)} dt

(a)

と近似できる. また, この間の相転移で消費した熱量は, 氷の単位体積あたりの潜熱を L と
すると, |D|L{s(t+ h)− s(t)} である. この量が h << 1において (a) と等しいとすると∫ t+h

t
{−kwux(t, s(t)−) + kiux(t, s(t)+)} dt = L{s(t+ h)− s(t)}

が成り立つと考えられる. この式の両辺を h で割って h → 0 として極限をとると

−kwux(t, s(t)−) + kiux(t, s(t)+) = Ls′(t)

が得られる. この条件は Stefan 条件 と呼ばれ, 自由境界の移動速度に関する拘束条件で
あり, 相転移におけるエネルギー保存則を反映している. Stefan 問題とは Stefan 条件を課
した自由境界問題である. Stefan 問題において未知関数は 2 つあり, 自由境界 s と温度関
数 u である. これらを同時に求めなければならないことが Stefan 問題特有の困難な点で
ある.

水の領域と氷の領域の温度が共に非自明な場合は 2 相問題と呼ばれる. 一方で u = 0 on
x > s(t) とすると, 温度変化は x < s(t) の部分のみ考えれば良いことになる. この場合は
1 相問題と呼ばれる. 以下では全て 1 相問題のみ扱う.

1.2 Stefan 問題の基本的な性質

次の熱方程式に対する Stefan 問題を考えてみる:
ut − uxx = 0 for 0 < t < T, 0 < x < s(t),

u(t, s(t)) = 0 for 0 < t < T,

s′(t) = −ux(t, s(t)) for 0 < t < T.

(S)

今の段階で初期条件や x = 0 における境界条件などは詳細に設定しないでおく. まず, い
くつかの解の例を紹介する.

Example 1.1. α,C > 0 を 1 つずつ固定する. このとき,

s(t) = 2α
√
t

u(t, x) = C
{
erfα− erf

(
x

2
√
t

)}
は (S) の解である. ただし,

erf(x) =
2√
π

∫ x

0
e−z2 dz

である.



Example 1.2.
s(t) = t

u(t, x) = et−x − 1

は (S) の解である.

このように具体的に書ける解を紹介したが, 一般的に Stefan 問題の解を具体的に書くの
は困難である. また, Stefan 問題は非線形であることにも注意する. 実際に (S) の解の定数
倍や, 2 つの解の和が (S) の解になっていないことが容易にわかる.

その他にも, (S) には (境界条件や初期条件に適当な条件を課した上で) 以下のような基本
的な性質が成り立つ:

• 古典解 (s, u) の存在, 一意性, 正則性,

• 比較原理,

• 初期値が正値のときの s(t) の狭義単調増加性 (Hopf’s Lemma より従う).

1.3 先行研究

前節で熱方程式に対する Stefan 問題について紹介した. 次に, 半線形熱方程式に対する
Stefan 問題を紹介する. 先行研究 [6], [8], [13] では以下の Stefan 問題が研究された:

ut − uxx = up for 0 < t < T, 0 < x < s(t),

−ux(t, 0) = 0 for 0 < t < T,

u(t, s(t)) = 0 for 0 < t < T,

u(0, x) = u0(x) ≥ 0, s(0) = s0 for 0 < x < s0,

s′(t) = −ux(t, s(t)) for 0 < t < T.

(SP’)

(SP’) の可解性, 解の正則性, 比較原理, 一意性等については Kenmochi ([9], [10], [11] を
参照) や, Fasano, Primicerio らによって研究されている ([5]を参照). (SP’) の解の安定
性についてはAiki, Imai ([4] を参照), Souplet によって研究された ([13] を参照).

また, [8] では Souplet らが問題 (SP’) を以下のような観点から研究した.

A 問題 (SP’) の解は有限時間で爆発することがあるか? もしあるなら初期値がどのよ
うな十分条件をみたせばよいか?

B 問題 (SP’) の解は初期値が十分小さければ時間大域的に存在するか?

C 問題 (SP’) の時間大域解の漸近挙動はどのようになるか? 特に時間大域解で非有界
なものは存在するか?

これらの問題 A, B, C は, (SP’) に対応する以下の固定境界問題{
ut − uxx = up for 0 < t < T, 0 < x < L,

u(t, L) = ux(t, 0) = 0 for 0 < t < T,
(F)

の延長として研究されてきた. 問題 A については, 問題 (F) に爆発解が存在することが知
られているので, 比較原理により (SP’) にも爆発解が存在することがただちにわかる. Aiki



は (SP’) の爆発解のプロファイルについて考察した ([2] を参照). Aiki の結果は次の通り
である. 初期値が

u0,x(x) < 0 for 0 < x < s0

および
u0,xx(x) + u0(x)

p ≥ 0 for 0 < x < s0

をみたすとする. この初期値における問題 (SP’) の解 (s, u) が爆発時刻 T ∗ で爆発する
とき,

lim
t→T ∗

u(t, 0) = ∞, lim
t→T ∗

s(t) = L < ∞

をみたし, かつ, ある (0, L) 上の実数値関数 M(x) が存在し,

|u(t, x)| ≤ M(x) for 0 < t < T ∗, 0 < x < s(t)

であることを示した. すなわち, 解が爆発するとき, 自由境界 s は有限値に収束し, かつ
u(t, x) は x = 0 においてのみ爆発し, それ以外の x については必ず有界であることを示し
ている. この爆発解の性質は Fujita, Chen によって固定境界の場合に同様の結果が既に得
られていた ([7] を参照). Aiki はこの結果を Stefan 問題に応用し, 上の結果を得た. さら
に Aiki は (SP’) の x = 0 の境界条件を Dirichlet 条件にした問題の爆発解についても同様
の考察を試みている ([1] を参照).

Souplet らは (SP’) の解が爆発するための十分条件を以下のように与えた ([8] を参照). ま
ず, 時刻 t におけるエネルギーを以下で定義する.

Ẽ(t) =

∫ s(t)

0

(
(ux)

2

2
− up+1

p+ 1

)
(t, x) dx

(SP’) の解の有限時間の爆発について, 初期値 u0 が

E(u0) =

∫ s0

0

(
(u0,x)

2

2
− up+1

0

p+ 1

)
(x) dx <

π2

256

∥u0∥31
(s0 + ∥u0∥1)4

をみたすとき, 解は有限時刻で爆発する. これは Levine によるエネルギー関数の凸性を用
いる方法 ([12] を参照) によって示されている.

問題 B, C について, Aiki, Imai は問題 (SP’) の解 (s, u) について, 初期値が十分小さけ
れば ∥u(t)∥∞ が 0 に指数減衰することを示した ([3] を参照). Souplet らは ∥u(t)∥∞ が指
数減衰するための十分条件を与えた. また, 時間大域解は必ず 0 に一様収束することを示
し, 時間大域解で非有界なものは存在しないことが示された. さらに時間大域解を自由境界
が発散するか収束するかで分類した ([8] を参照).

ただし, s(t) が t → ∞ で無限大に発散する時の発散レートについては未解決である. 一
般に Stefan 問題において s(t) の発散レートを求めるのは非常に難しいようである.



2 主定理

次に, 非線形境界条件付きの一次元熱方程式に対する Stefan問題

ut − uxx = 0 for 0 < t < T, 0 < x < s(t),

−ux(t, 0) = u(t, 0)p for 0 < t < T

u(t, s(t)) = 0 for 0 < t < T,

u(0, x) = u0(x) ≥ 0, s(0) = s0 for 0 < x < s0,

s′(t) = −ux(t, s(t)) for 0 < t < T

(SP)

を考える。ここで, p > 1, s0 > 0, u0 ∈ C1([0, s0]), T ∈ (0,∞] とする. これは境界 x = 0
における発熱反応のモデルとみなせる. (SP’) との違いは非線形項が領域の内部ではなく,
領域の境界上にある点である. 対応する固定境界問題

ut − uxx = 0 for 0 < t < T, 0 < x,

−ux(t, 0) = u(t, 0)p for 0 < t < T

u(0, x) = u0(x) ≥ 0, for 0 < x,

においても, (F) と類似点が多いことが知られており, Stefan 問題においても (SP) の解析
に (SP’) の手法が有用であることが期待される. 本研究の新規性のひとつは (SP) の解を
分類したことである.

主定理を述べる前に解の定義を述べる. 解は古典解の範囲で考える. 厳密に述べると, (s, u)
が問題 (SP) の解であるとは, s が区間 [0, T ) の C1-級関数 s = s(t) であり,

u ∈ C2;1(D), u ∈ C1;0(∂D), u ∈ C(D)

かつ (s, u) が D 上の各点において問題 (SP) をみたすものとする. ただし, 領域 D, ∂D,
D は

D :=
∪

0<t<T

{t} × (0, s(t)), ∂D :=
∪

0<t<T

{t} × {0, s(t)}, D :=
∪

0≤t<T

{t} × [0, s(t)]

とする.

主定理の 1 つ目はエネルギー及び爆発時刻における解の挙動に関するものである. この定
理は解の分類に重要な役割を担うものである.

Theorem 2.1. 問題 (SP) の解 (s, u) の最大存在時間を Tm とする. エネルギーを

E(s(t), u(t)) :=
1

2

∫ s(t)

0
|∂xu(t)|2 dx− 1

p+ 1
u(t, 0)p+1 for t ∈ (0, Tm). (2.1)

で定義する.

(1) Tm = ∞ のとき, 以下が成り立つ:

E(s(t), u(t)) ≥ π2

256

∥u(t)∥3L1(0,s(t))

(s(t) + ∥u(t)∥L1(0,s(t)))
4
> 0 for t ∈ (0,∞).



(2) Tm < ∞ とする. このとき, limt↗Tm u(t, 0) = ∞ and limt↗Tm s(t) < ∞ である. さ
らに, 以下が成り立つ:

sup
t∈(Tm/2,Tm)

(Tm − t)
1

2(p−1)u(t, 0) < ∞, (2.2)

sup
t∈(Tm/2,Tm)

∥u(t)∥L∞(δ,s(t)) < ∞ for any δ ∈ (0, s0), (2.3)

lim
t↗Tm

E(s(t), u(t)) = −∞. (2.4)

次に解の分類に関する主定理を述べる. 解の分類が初期値の大きさによって変化すること
も主張している.

Theorem 2.2. 任意の λ > 0 について (sλ, uλ) を (SP) の解とし, Tλ をその解の最大存
在時間とする. このとき, λ∗ ≤ λ∗ なる λ∗, λ

∗ ∈ (0,∞) が存在して, 以下を満たす:

(1) 指数減衰する時間大域解:

0 < λ < λ∗ とする. このとき, Tλ = ∞, limt→∞ sλ(t) < ∞ であり, かつ以下が成り
立つ:

∥uλ(t)∥L∞(0,sλ(t)) = O(e−αt) as t → ∞ for some α ∈ (0,∞).

(2) 高々多項式程度の減衰をする時間大域解:

λ∗ ≤ λ ≤ λ∗ とする. このとき, Tλ = ∞ かつ limt→∞ sλ(t) = ∞ である. さらに,
以下が成り立つ:

lim
t→∞

∥uλ(t)∥L∞(0,sλ(t)) = 0, lim inf
t→∞

sλ(t)
1

p−1 ∥uλ(t)∥L∞(0,sλ(t)) > 0,

sλ(t) = (1 + o(1))

∫ t

0
uλ(τ, 0)

p dτ = o
(
t
1
2

)
as t → ∞.

特に,

lim inf
t→∞

t
1

2(p−1) ∥uλ(t)∥L∞((0,s(t)) = ∞. (2.5)

である.

(3) 爆発解:

λ > λ∗ とする. このとき, 解 (sλ, uλ) は爆発する.. すなわち, Tλ < ∞.

最後に自由境界の発散レートに関する結果を述べる.

Theorem 2.3. 初期値が u0 ∈ C1(0, s0), 及び ∂xu0 ≤ 0 on (0, s0) を満たすとする. この
とき, 任意の λ ∈ [λ∗, λ

∗] について, 次が成り立つ:

lim inf
t→∞

t
− p−1

2p−1 sλ(t) > 0. (2.6)

式 (2.6) は ∂xu0 ≤ 0 on (0, s0) の仮定を外しても成り立つと予想される. また,

lim sup
t→∞

t
− p−1

2p−1 sλ(t) < ∞,

も成り立つと予想される.

この自由境界の発散レートは方程式の相似変換から得られるレート
√
t からずれており,

もし正しければ興味深い結果である. 部分的にでも自由境界の発散レートに関する結果が
得られたことも重要な新規性のひとつである.



証明のポイント

本研究の主定理の証明の最も重要なポイントはスケール変換である. 適当な列 {(tn, xn)}n
について,

vn(τ, y) = λ
1

p−1
n u(tn + λ2

nτ, λny)

と変換し, n → ∞ として適当な収束部分列 vn → v をとる. このとき, v の満たす方程式
や不等式から時間大域解の性質や爆発時刻におけるエネルギーの発散などを証明できる.

ただし, 時間大域解が 0 に収束することの証明において安直に (SP’) と同様の方法が使え
ない. これは非線形項が領域内部ではなく, 境界上にあることから発生する困難な点であ
る. 本講演では, 列 {(tn, xn)}n の取り方を変えたり, 比較原理を組み合わせた手法でこの
困難を解決したことを説明する.
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